Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2309469121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442181

RESUMEN

The early-life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early-life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early-life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early-life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early-life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early-life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early-life effects on fitness-related traits.


Asunto(s)
Experiencias Adversas de la Infancia , Metilación de ADN , Animales , Motivos de Nucleótidos , Bioensayo , Papio/genética
2.
Elife ; 122024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407202

RESUMEN

Previously, we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here, we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.


Asunto(s)
Metilación de ADN , Interacción Gen-Ambiente , Humanos , Genoma Humano , Bioensayo , Exposición a Riesgos Ambientales , Interferón-alfa
3.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37293015

RESUMEN

Previously we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures-one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.

4.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333311

RESUMEN

The early life environment can profoundly shape the trajectory of an animal's life, even years or decades later. One mechanism proposed to contribute to these early life effects is DNA methylation. However, the frequency and functional importance of DNA methylation in shaping early life effects on adult outcomes is poorly understood, especially in natural populations. Here, we integrate prospectively collected data on fitness-associated variation in the early environment with DNA methylation estimates at 477,270 CpG sites in 256 wild baboons. We find highly heterogeneous relationships between the early life environment and DNA methylation in adulthood: aspects of the environment linked to resource limitation (e.g., low-quality habitat, early life drought) are associated with many more CpG sites than other types of environmental stressors (e.g., low maternal social status). Sites associated with early resource limitation are enriched in gene bodies and putative enhancers, suggesting they are functionally relevant. Indeed, by deploying a baboon-specific, massively parallel reporter assay, we show that a subset of windows containing these sites are capable of regulatory activity, and that, for 88% of early drought-associated sites in these regulatory windows, enhancer activity is DNA methylation-dependent. Together, our results support the idea that DNA methylation patterns contain a persistent signature of the early life environment. However, they also indicate that not all environmental exposures leave an equivalent mark and suggest that socioenvironmental variation at the time of sampling is more likely to be functionally important. Thus, multiple mechanisms must converge to explain early life effects on fitness-related traits.

5.
J Hered ; 112(5): 458-468, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34132805

RESUMEN

In North American gray wolves, black coat color is dominantly inherited via a 3 base pair coding deletion in the canine beta defensin 3 (CBD103) gene. This 3 base pair deletion, called the KB allele, was introduced through hybridization with dogs and subsequently underwent a selective sweep that increased its frequency in wild wolves. Despite apparent positive selection, KBB wolves have lower fitness than wolves with the KyB genotype, even though the 2 genotypes show no observable differences in black coat color. Thus, the KB allele is thought to have pleiotropic effects on as-yet unknown phenotypes. Given the role of skin-expressed CBD103 in innate immunity, we hypothesized that the KB allele influences the keratinocyte gene expression response to TLR3 pathway stimulation and/or infection by canine distemper virus (CDV). To test this hypothesis, we developed a panel of primary epidermal keratinocyte cell cultures from 24 wild North American gray wolves of both Kyy and KyB genotypes. In addition, we generated an immortalized Kyy line and used CRISPR/Cas9 editing to produce a KyB line on the same genetic background. We assessed the transcriptome-wide responses of wolf keratinocytes to the TLR3 agonist polyinosinic:polycytidylic acid (polyI:C), and to live CDV. K locus genotype did not predict the transcriptional response to either challenge, suggesting that variation in the gene expression response does not explain pleiotropic effects of the KB allele on fitness. This study supports the feasibility of using cell culture methods to investigate the phenotypic effects of naturally occurring genetic variation in wild mammals.


Asunto(s)
Virus del Moquillo Canino , Lobos , Alelos , Animales , Virus del Moquillo Canino/genética , Perros , Expresión Génica , Receptor Toll-Like 3/genética , Lobos/genética
6.
Elife ; 102021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843584

RESUMEN

In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also upregulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.


Some social animals are highly cooperative creatures that live in tight-knit colonies. Bees and ants are perhaps the most well-known examples of social insects, while Damaraland mole-rats and naked mole-rats, two rodent species found in southern and eastern Africa, are among the most cooperative mammal species. In these colony-forming animals, only one or a few females reproduce and these fertile females are frequently referred to as "queens". When an animal becomes a queen, her body shape can change dramatically to support the demands of high fertility and frequent reproduction. The molecular basis of such changes has been well-described in social insects. However, they are poorly understood in mammals. To address this knowledge gap, Johnston et al. studied how transitioning to queen status affects bone growth and structural integrity in Damaraland mole-rats, as well as body shape and size. The experiments compared non-breeding female mole-rats with other adult females recently paired with a male to become the sole breeder of a new colony. Johnston et al. also used bone-derived cells grown in the laboratory to assess underlying gene regulatory changes in new queen mole-rats. Johnston et al. showed that transitioning to the role of queen leads to a cascade of skeletal changes accompanied by shifts in the regulation of genetic pathways linked to bone growth. Queen mole-rats show accelerated growth in the spinal column of their lower back. These bones are called lumbar vertebrae and this likely allows them to have larger litters. However, queen mole-rats also lose bone growth potential in their leg bones and develop thinner thigh bones, which may increase the risk of bone fracture. Therefore, unlike highly social insects, mole-rats do not seem to have escaped the physical costs of intensive reproduction. This work adds to our understanding of the genes and physical traits that have evolved to support cooperative behaviour in social animals, including differences between insects and mammals. It also shows, with a striking example, how an animal's genome responds to social cues to produce a diverse range of traits that reflect their designated social role.


Asunto(s)
Evolución Biológica , Desarrollo Óseo , Fémur/crecimiento & desarrollo , Fertilidad , Genoma , Vértebras Lumbares/crecimiento & desarrollo , Ratas Topo/crecimiento & desarrollo , Conducta Sexual Animal , Factores de Edad , Animales , Desarrollo Óseo/genética , Conducta Cooperativa , Fertilidad/genética , Regulación de la Expresión Génica , Ratas Topo/genética , Ratas Topo/psicología , Factores Sexuales , Conducta Social
7.
Elife ; 102021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821798

RESUMEN

Aging, for virtually all life, is inescapable. However, within populations, biological aging rates vary. Understanding sources of variation in this process is central to understanding the biodemography of natural populations. We constructed a DNA methylation-based age predictor for an intensively studied wild baboon population in Kenya. Consistent with findings in humans, the resulting 'epigenetic clock' closely tracks chronological age, but individuals are predicted to be somewhat older or younger than their known ages. Surprisingly, these deviations are not explained by the strongest predictors of lifespan in this population, early adversity and social integration. Instead, they are best predicted by male dominance rank: high-ranking males are predicted to be older than their true ages, and epigenetic age tracks changes in rank over time. Our results argue that achieving high rank for male baboons - the best predictor of reproductive success - imposes costs consistent with a 'live fast, die young' life-history strategy.


For most animals, age is one of the strongest predictors of health and survival, but not all individuals age at the same rate. In fact, animals of the same species can have different 'biological ages' even when they have lived the same number of years. In humans and other mammals this variation in aging shows up in chemical modifications known as DNA methylation marks. Some researchers call these marks 'epigenetic', which literally means 'upon the genes'. And some DNA methylation marks change with age, so their combined pattern of change is often called the 'epigenetic clock'. Environmental stressors, such as smoking or lack of physical activity, can make the epigenetic clock 'tick' faster, making the DNA of some individuals appear older than expected based on their actual age in years. These 'biologically older' individuals may also experience a higher risk of age-related disease. Studies in humans have revealed some of the reasons behind this fast biological aging, but it is unclear whether these results apply in the wild. It is possible that early life events trigger changes in the epigenetic clock, affecting health in adulthood. In primates, for example, adversity in early life has known effects on fertility and survival. Low social status also has a negative effect on health. To find out whether early experiences and the social environment affect the epigenetic clock, Anderson, Johnston et al. tracked DNA methylation marks in baboons. This revealed that epigenetic clocks are strong predictors of age in wild primates, but neither early adversity nor the strength of social bonds affected the rate at which the clocks ticked. In fact, it was competition for social status that had the most dramatic effect on the clock's speed. Samples of males taken at different times during their lives showed that their epigenetic clocks sped up or slowed down as they moved up or down the social ladder, reflecting recent social experiences, rather than events early in their lives. On average, epigenetic clock measurements overestimated the age in years of alpha males by almost a year, showing that fighting to be on top comes at a cost. This study highlights one way in which the social environment can influence aging. The next step is to understand how health is affected by the ways that animals attain social status. This could help researchers who study evolution understand how social interactions and environmental conditions affect survival and reproduction. It could also provide insight into the effects of social status on human health and aging.


Asunto(s)
Envejecimiento/genética , Animales Salvajes/genética , Conducta Animal , Metilación de ADN , Epigénesis Genética , Papio cynocephalus/genética , Distancia Psicológica , Conducta Social , Factores de Edad , Animales , Animales Salvajes/psicología , Ecosistema , Femenino , Estado de Salud , Esperanza de Vida , Masculino , Papio cynocephalus/psicología , Factores Sexuales
8.
Elife ; 72018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575519

RESUMEN

Changes in DNA methylation are involved in development, disease, and the response to environmental conditions. However, not all regulatory elements are functionally methylation-dependent (MD). Here, we report a method, mSTARR-seq, that assesses the causal effects of DNA methylation on regulatory activity at hundreds of thousands of fragments (millions of CpG sites) simultaneously. Using mSTARR-seq, we identify thousands of MD regulatory elements in the human genome. MD activity is partially predictable using sequence and chromatin state information, and distinct transcription factors are associated with higher activity in unmethylated versus methylated DNA. Further, pioneer TFs linked to higher activity in the methylated state appear to drive demethylation of experimentally methylated sites. MD regulatory elements also predict methylation-gene expression relationships across individuals, where they are 1.6x enriched among sites with strong negative correlations. mSTARR-seq thus provides a map of MD regulatory activity in the human genome and facilitates interpretation of differential methylation studies.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Genoma Humano , Análisis de Secuencia de ADN/estadística & datos numéricos , Factores de Transcripción/genética , Cromatina/química , Biología Computacional/métodos , Islas de CpG , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células K562 , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/metabolismo
9.
Mol Ecol ; 25(22): 5680-5691, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27747949

RESUMEN

The annual migration of a bird can involve thousands of kilometres of nonstop flight, requiring accurately timed seasonal changes in physiology and behaviour. Understanding the molecular mechanisms controlling this endogenous programme can provide functional and evolutionary insights into the circannual biological clock and the potential of migratory species to adapt to changing environments. Under naturally timed photoperiod conditions, we maintained captive Swainson's thrushes (Catharus ustulatus) and performed RNA sequencing (RNA-Seq) of the ventral hypothalamus and optic chiasma to evaluate transcriptome-wide gene expression changes of individuals in migratory condition. We found that 188 genes were differentially expressed in relation to migratory state, 86% of which have not been previously linked to avian migration. Focal hub genes were identified that are candidate variables responsible for the occurrence of migration (e.g. CRABP1). Numerous genes involved in cell adhesion, proliferation and motility were differentially expressed (including RHOJ, PAK1 and TLN1), suggesting that migration-related changes are regulated by seasonal neural plasticity.


Asunto(s)
Migración Animal , Expresión Génica , Estaciones del Año , Pájaros Cantores/genética , Animales , Fotoperiodo , Transcriptoma
10.
Mol Biol Evol ; 33(8): 1967-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189566

RESUMEN

Gene expression levels change as an individual ages and responds to environmental conditions. With the exception of humans, such patterns have principally been studied under controlled conditions, overlooking the array of developmental and environmental influences that organisms encounter under conditions in which natural selection operates. We used high-throughput RNA sequencing (RNA-Seq) of whole blood to assess the relative impacts of social status, age, disease, and sex on gene expression levels in a natural population of gray wolves (Canis lupus). Our findings suggest that age is broadly associated with gene expression levels, whereas other examined factors have minimal effects on gene expression patterns. Further, our results reveal evolutionarily conserved signatures of senescence, such as immunosenescence and metabolic aging, between wolves and humans despite major differences in life history and environment. The effects of aging on gene expression levels in wolves exhibit conservation with humans, but the more rapid expression differences observed in aging wolves is evolutionarily appropriate given the species' high level of extrinsic mortality due to intraspecific aggression. Some expression changes that occur with age can facilitate physical age-related changes that may enhance fitness in older wolves. However, the expression of these ancestral patterns of aging in descendant modern dogs living in highly modified domestic environments may be maladaptive and cause disease. This work provides evolutionary insight into aging patterns observed in domestic dogs and demonstrates the applicability of studying natural populations to investigate the mechanisms of aging.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica , Lobos/genética , Factores de Edad , Animales , Animales Salvajes , Evolución Biológica , Perros , Ambiente , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , Selección Genética , Análisis de Secuencia de ARN/métodos , Factores Sexuales
11.
Appl Opt ; 42(18): 3451-9, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12833944

RESUMEN

The strength of optical turbulence, Cn2(z), 2-3 m above ground level, was measured as a function of distance along a 1.23-km path by the simultaneous capture of the scintillation from two infrared laser sources. The data collected differ in a number of important aspects from the normal vertical scintillation detection and ranging (SCIDAR) data in astronomy. The SCIDAR inversion method for the horizontal path problem is outlined and demonstrated on experimental data collected from three field trials.

12.
Appl Opt ; 41(32): 6768-72, 2002 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-12440530

RESUMEN

The measurement of the strength of atmospheric optical turbulence by use of a modified generalized SCIDAR (scintillation detection and ranging) inversion technique is outlined and demonstrated. This new method for normalizing and inverting scintillation covariances incorporates the geometry specific to generalized SCIDAR. Examples of profiles from two astronomical observation sites are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...